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LETI’ER TO THE EDITOR 

Evidence for the first-order phase transition in the multifractal 
spectrum for diffusion-limited aggregation 

Marek Wolf 
Institute of Theoretical Physics, University of Wroctaw, SO-205 Wrociaw, Cybulskiego 36, 
Poland 

Received 24 September 1990 

Abstract. A new method of calculating the growth probabilities of the DLA clusters based 
on the Spitzer theorem is presented. It allows very accurate determination of the probabilities 
of hitting the random walkers by the perimeter of the cluster, even deep in the ‘fjords’ 
where the probabilities are small. The evidence for the first-order phase transition in the 
plots off(q)  are found. The large fluctuations of the minimal growth probabilities between 
different clusters are also discussed. 

Recently there has been a growing interest in understanding the mechanism leading 
to formation of the ‘fjords’ in the diffusion-limited aggregation ( DLA) clusters (see Ball 
and Blunt 1989, 1990) and the related phase transition in the multifractal spectrum 
f ( q )  (Blumenfeld and Aharony 1989, Lee and Stanley 1988, Lee et a1 1989) as well 
as the breakdown of the scaling behaviour of the moments (Cohen and Harris 1990, 
Trunfio and Alstrom 1990). In this letter I present the results of very accurate computer 
calculations of the hitting probabilities of DLA clusters based on the Spitzer theorem 
(Spitzer 1964) which allow the firm detection of the first-order phase transition at q = 0. 

Diffusion-limited aggregation is a simple stochastic process leading to the formation 
of fractal patterns. It was proposed by Witten and Sander (1981) and now a large 
amount of literature devoted to this topic exists (see e.g. Stanley and Ostrovsky 1985, 
Vicsek 1988). In this model a single particle walks randomly on the square lattice until 
it reaches another particle (‘seed’), usually located in the centre of the lattice. Then, 
a new particle initiates its random walk. If  the particle contacts the cluster (now 
consisting of two particles) it is incorporated into the cluster and the cluster grows. 
This process is repeated many times (-103-106) and leads to the formation of the 
ramified fractal structure for which the relation between the number, N (  R ) ,  of particles 
inside the circle of radius R is of the form 

N ( R ) - R D  ( 1 )  

where D = 1.7 is the fractal dimension. 
A satisfactory theory of DLA is still missing. In particular, nobody has yet proved 

equation ( 1 )  although a few attempts were made (see Muthukumar 1984, Tokuyama 
and Kawasaki 1984 and Kolb 1987). The breakthrough occurred with the recognition 
of the role played by the set of the growth probabilities {p.;}csr., where p 5  is the 
probability that the perimeter site s is the next to grow and r is the set of the nodes 
on the perimeter of a given DLA cluster (Turkewich and Scher 1985). The customary 
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way of studying the properties of the set of probabilities { p s }  is by means of the 
moments (Halsey et a1 1985, Amitrano et a1 1986) 

Z q ( R )  = .E p %  (2)  
T 

where R is the linear size (radius of gyration) of the aggregate and q E R. In the early 
works, the power-like dependence of the moments on R was found: 

Z q ( R )  - R-"". (3) 

The fact that the function T( q )  is not linear is called multifractality (Halsey et a1 1986) 
and the function f( q)  

f ( q )  = qa(q)  - 4 4 )  ( 4 b )  
is called the multijructal spectrum. Sometimes the relation ( 4 a )  is inverted and sub- 
stituted into (46) giving the Legendre transform f ( a )  of the function T(q). 

Blumenfeld and Aharony (1989) gave the theoretical arguments that the function 
f( q )  should display the first-order phase transition at qc = 0. The detection of the phase 
transition is a problem of a numerical nature-it is linked to the sites with very small 
hitting probabilities, p S ,  and to get reliable results the accuracy of the calculation of 
p,s should be many orders smaller thanpmi,. I have quite recently performed a numerical 
calculation using the Spitzer theorem and these results are reported here. This method 
is very accurate; for the completely screened sites (for which p c  = 0 and which do not 
contribute to the moments) I have sometimes obtained ps  of the order lo-*' instead 
of p S .  There is also another check of the accuracy; for pairs (or triplets) of the sites, 
which by symmetry arguments should possess the same p r ,  I have obtained probabilities 
whose first 18 digits coincide. 

The Spitzer formula gives the hitting probabilities of the arbitrary finite set for the 
arbitrary aperiodic recurrent random walk in two dimensions. Because in the usual DLA 

the particles perform the symmetric random walk on a two-dimensional lattice Z2, I 
will describe here the Spitzer recipe for calculating the hitting probabilities of a simple 
random walk by points belonging to a finite set B. For the simple random walk the 
transition probability P(x, y )  is of the form 

i f x  and y are nearest-neighbour sites 
in other cases. 

I 

(5) 

Let Pn(x, y )  denote the probability that a particle executing a random walk and starting 
at the point x will reach the point y after n steps: 

P(X, Y 1 = {; 

Pn(x, Y )  = C P ( x ,  x l ) P ( x ,  9 ~ 2 )  . . P(xn-1, y ) .  (6) 
x,EZ2,:= I ,  .... n - I 

Let G n ( x ,  y )  denote the expected number of visits of the random walk starting at x to 
the point y within n steps: 

The crucial quantity in the Spitzer formula is the potential kernel defined as 

An(x ,  Y )  = Gn(0,O)- Gn(x, Y ) .  (8) 
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Let A(x, y)  denote the limit 

A(x, y )  = lim A,(x, y ) .  (9) 
n - i D  

It can be proved that the operator A(x, y )  is symmetric and, if restricted to any finite 
subset B of Z2, invertible. Let K B ( x ,  y)  denote this inverse matrix 

Let H B ( x ,  y)  denote the probability of first hitting the set B at the point y when starting 
point x iZ B. If the set B E Z2 consists of at least two points then the following formula 
holds 

In the diffusion-limited aggregation it is assumed that the particle starts from infinity; 
1x1 + 00. For such a case it can be shown that (12) reduces to a simpler expression (see 
Spitzer 1964, theorem 14.1) 

Due to the translational symmetry of the simple random walk we have 

A(x, Y )  = a(x - Y )  

where the function a ( x )  is given by the following integral: 

Here the notation x = (m, n )  was introduced. The integral (14) can be calculated exactly 
only for points lying on the ‘diagonal’ x = ( n ,  n ) ,  but it suffices by proper use of the 
symmetry properties of the double integral (14) to obtain values of a( n, m) for arbitrary 
points on the plane (see Spitzer 1964). 

In this approach the natural parameter describing the size of the clusters is the 
number of perimeter sites, which I will denote as P. 1 have checked that there is a 
power-like dependence between P and N (or R ) :  P - N Y  with y = 0.92 and it justifies 
the use of P instead of R or N. 

I have generated 400 clusters consisting of up to P=79, which corresponds to 
about 60 particles. At five stages of the growth process, P = 60. . .61, 64. . .65,. . . , 
78 . . .79 (it should be remarked that the perimeter can also change by two sites), the 
actual p,s were calculated by means of the Spitzer theorem and recorded. The moments 
were averaged over clusters: 

1 #cluster P 
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where p:j)  is the probability of the sth perimeter site in the ith cluster. Next the 
functions f( q, P) were calculated according to 

(16) T( q, P) = -In Z,,( P)/ln P 

In figure 1 the functions f(q, P) are plotted. The values taken by fs are rather 
unusual. This is caused by looking for the scaling of the moments with respect to the 
number of perimeter sites P, and not N or R. It is seen from figure 1 that exactly at 
qc = 0 all fs have the first derivative equal to zero meaning that at this point the phase 
transition occurs. For larger P (thermodynamic limit) the maximum is becoming 
sharper and for P+cc the first derivative f'(q, P) should become non-analytical at 
qc = 0. It turns out that there is no shift of the critical point with the size of the clusters 
(i.e. q,(P) do not depend on P) so, despite the small clusters I was able to simulate, 
they provide the reliable information about the point of phase transition. This situation 
can be contrasted with, for example, the Ising model, where the point of the maximum 
(in the thermodynamic limit the point of phase transition) specific heat shifts with the 
size of the lattice, see e.g. (Stosic er a1 1990, figure 5). Because of the small number 
of clusters my results confirm the suspicion that the phase transition should also occur 
for typical clusters (Blumenfeld and Aharony 1989). 
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Figure 1. The dependence of f ( q .  P )  on q. Exactly at qc = 0 all fs have the first derivative 
equal to zero-for larger P (thermodynamic limit) the maximum is becoming sharper. 

My data does not allow a firm conclusion about the dependence of the typical 
minimum growth probabilities p,,,( N )  with the size of the clu&r..Three dependencies 
were proposed in the past. Blumenfeld and Aharony (1989) based their reasoning on 
the assumption that pmin decreases exponentially with cluster mass: 

pmin(  N )  - exp(AN"). (18) 

pmin( N )  - N-"JD. (19) 

Harris and Cohen (1990) proposed the power-like behaviour 

Quite recently Schwarzer er a1 performed numerical simulations suggesting surprising 
dependence: 

Unfortunately the sizes of the clusters I have generated are too small to allow the 
distinction between the relations (18)-(20); points plotted in the appropriate way to 

-In pmin( N )  - (In N)?' (Y = 2). (20) 
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Figure 2. The histogram showing the number of clusters with f =78 or 79 having pmln 
contained in the interval of length 0.2 around In pmln; the histogram for pmax is shown on 
the right (note different scales on the left and right axis). 

test these dependencies lie exactly on straight lines for all these cases. However I 
would like to point out another phenomenon which was detectable due to the high 
accuracy of my method; namely there are large fluctuations between pmin belonging 
to different clusters. The absolute minimum growth probability among 400 clusters 
was 2.96 x lo-' and the largest was 4.1 1 x see figure 2. As these fluctuations will 
increase with the sizes of the clusters, the validity of this observation is not restricted 
by small numbers of particles in the clusters I was able to generate. Even if the pmin 
decreases in the power-like way, these large fluctuations can lead to the scaling violation 
because they prevent the steepest-descent estimation of the moments for negative qs.  
It should be stressed that practically all pkax ( i  = 1, . . . ,400) are equal and they lie in 
the narrow interval (4.4 x 7.6 x see figure 2. 
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